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ABSTRACT

The Daper provides a survey of results in statistical inference

in systems reliability using Bernoulli sampling of ind;viaual components.

Particular attention is giver to the notion of Buehler optimality and

its implementation in such problems. Recent results of the authors

on Buehier optimal confidence bnunds on the reliability of series and

parallel systems are discussed. For series systems, these results

employ a generalization of an inequality iF Sudakov. For parallel

systems, Buehler optimal bounds are obtained for small numbers of

failures using the notion of Schur concavity, Estimates of the optimal

bounds are obtained in those cases for which the property of Schur

concavity does not hold.
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SIGNiFICANCE AND EXPLANATION

Parallel aria series systems arise naturally in practice in engineering

and physics. Therefore it is of substantial significance to be able to

utilize efficiently data obtained on individual components for the purpose

of obtaining an overall assessment of the reliability oa the system. The

methods of this paper may be employed for this purpose.
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RECENT ADVAINCES IN STATISTICAL METHODS FOR SYSTEM

RELIABILITY USING BERNOULLI SAMPLING OF COMPONENTS

by

Bernard Harris* and Andrew P. Soms**

1. INTRODUCTION

In this paper we examine the history of statistical inference in systems

reliability using Bernoulli sampling of components with particular emphasis on

the notion of Buehler optimality and its role in such problems. In particular,

we focus on recent results of the authors which facilitate obtaining Buehler optimal

bounds on the reliability of series and parallel systems. For series systems,

these results employ a generalization of an inequality of Sudakov and for

parallel systems, Buehler optimal bounds are obtained using the notion of Schur

concavity when the number of failures is small. Estimates of the optimal bounds

for parallel systems are obtained for those cases in which the technique employing

Schur concavity fails.

We suppose that the system has k components and let p,, i - 1,2,...,k

be the probability that the ith component does not fail. We further assume that

the components are stochastically independent. Let h(plp 2 ,...,pk) be the

probability that the system does not fail. Then the problem under discussion

may be described as follows. The experimenter takes Ni observations on each

of the k comporents and records yi, the number of failures observed on the

ith componeit. Then given this dati, we wish to obtain a 1 - a lower confidence

limit on h(pl,p,....v'Pk)"

Sponsored by the Alfted States Army under Contract No. DAAG2g-80-C-0041 and t
Office of Raval R :search under Contract No. 1100014-79-C-0321.
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Throughout the discussion, we restrict our attention to coherent

systems. These may be described as systems in which the system fails when

all components fail and the system functions when all components function.

In addition, replacing a defective component by a good component will not

cause a functioning system to fail. The reader is referred to R. E. 6arlow

and F. Proschan [1) for relevant details concerning the reliability fun':tion

h(pl,...,pk) and properties of coherent systems.

I The problem discussed herein arises naturally in many situations

relevant to acquisition decisions. For such an illustration consider a

"one-shot device", namely, one which is to perform a specific function at a

specific time, so that the lifetime of the device is not a consideration. Then,

you are interested in assuring that the probability that the device will function

properly when it is to be used is at least a specified number.

For a second application, consider a system which is to function for a

specified length of time, known as the mission time. If the only data avail-

able is the number of failures of each component before the mission time, then

the model of this paper is appropriate.

Throughout the paper, we emphasize the specific cases of series and

parallel systems.

~ I el
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2. BUEHLER OPTIMAL CONFIDENCE LIMITS FOR SYSTEM RELIABILITY

We now introduce the notion of Buehler optimality with respect to the

ordering function g(R), where R = (x 1 'x 2 '""Xk)' xi = N. " yi' i : 1,2,...,k.

In Buehler (1957), the following principle was proposed and applied to obtaining

confidence limits for the product of two binomial parameters. This corresponds

to proposing an optimal solution to the problem of determining lower c~nfidence

limits for the reliability of series systems of two components.

g(R) is an ordering function if for (I) = (Xll,xl 2 ,...,xlk) and

ý(2) = (x2 ,x 2 2 ,...,X2 k) with x1i • x2 i, i = l,2,...,k, we have

g(R(l)) 5 g(R(2)). In the original formulation, one orders the iT (Ni+1)

sample outcomes and lists the corresponding values of g(R'. Then calculate

P {g(x) Ž u} (1)

This is the probability, for fixed ý, of getting an outcore as good as or

better than u since g(R) is ordered consistently with the iumber of

functioning components observed in the sample.

If we let

Q (u) = {•: P (g(R) Ž u)} ) a . (2)

Then Qa is a 1-a confidence region for • determinea by g(R). This

can be extended to a 1-a lower confidence bound for h(p) by letting

h(D) = inf fh(o): P (g(R) Ž u) Ž a} , (3)

forO< a < 1. It can be shown that if k(u) is any other system of lower

confidence limits based on the ordering function g(R), then Z(u) : h(u)

for all u. Further details on this optiimiality property and a proof of

the above assertion nay be found in Harris and Soms [8].
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Unfortunately, while this does give a procedure for obtaining best

lower confidence bounds once g(R) has been specified, this does not say how

to choose g(R). For various kinds of systems, many researchers have proposed

different ordering functions and quite a few statisticians have suggested
procedures which have the Buehler optimality property asymptotically but

not necessarily for any fixed sample size. In addition the literature

contains many suggested procedures which are not optimal but possess some other

favorable attribute such as ease of computation, while not deviating too far

from optimality. As originally described by Buehler many procedures employing

Buehler optimality are virtually incomputable for k > 2.

Other properties which some writers have considered desirable are

exactness and conservatism. Specifically, a confidence interval procedure is

exact if there are parameter points such that for those points, ý a in (3)

can be replaced by equality. In the case of (3), this is true for a large

class of ordering functions, since h(o) is continuous and the infimum

will be attained. A confidence interval procedure is conservative if the true

confidence coefficient is at least 1-a for all parameter points. Clearly,

many asymptotic approximations and other approximate procedures will violate this.

We discuss this by looking at some specific types of systems, beginning
i with series systems.
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3. LOWER CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS

A natural first attempt in selecting an ordering function for
k

series systems is to choose a point estimator for h(p) = i. p. Such an

estimator is the maximum likelihood estimator given by

k Xih(•) 11 (-.4)
S~i:I Ni

In the situation where the pi's are close to unity, the high reliability

case, we can write

k Ni-Yi
h(•) = N (5)r i=l Ni

and if the Ni's are large, this is commonly approximated by

k Y- k Yi
h(p) = .1 N (6)

i=l i=l
Then, under the assumption that the pi's are close to unity, if the Ni's

• ,

are all "large", this suggests replacing the original assumption of the

binomial distribution by the Poisson distribution and this alternative has

been exploited by many practitioners. In particular, l-h(A) is

regarded as havinga Poisson distribution with parameter ZX i/Ni.

Some alternative ordering functions that have been considered are

L aiYi + z (a: Yi)I/ 2 , (7)Ct1

where z. satisfies l-4(z.) = a, D(x) is the standard normal distribution

function, aI ** .. an and a. = (n ' - )-l This choice was proposed

by M. V. Johns, Jr. [10] and is somev,iat suggestive of (6) in that it is

a weighted normal deviate suggested by the Poisson approximation noted

previously.
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Buehler [2] ordered by computing separate 1 -(l-a)l/k confidence

bounds. The product of the separate confidence limits is the final

lower confidence limit.

It should be noted that Buehler directed most of his discussion to

parallel systems and all of his approximations and numerical examples are

appropriate only for that application. However, using the duality noted later,

the general discussion in his paper can be applied equally well to both

series and parallel systems.

Closely related to the maximum likelihood estimator and sometimes

employed as an ordering function are estimators of the form

k ) /k (8 )
Sg(R) : (Xi-a i)/(Ni-i)(i=l

where ai' a may be dependent on the Xi's and Ni's. Naturally, ai

and must satisfy conditions such that g(R) will be asymptotically

equivalent to the maximum likelihood estimator (5).

An example of this approach is given by A.Madansky [13], who calculated the

Wilks' likelihood ratio L(R) and used the asymptotic result that -2 log L(R)

has asymptotically a chi-square distribution with one degree of freedom to

obtain a lower confidence limit to the reliability function h(p). He

compared the results obtained using the likelihood ratio to those that

would be obtained employing the maximum likelihood estimator, where the

distribution of the maximum likelihood estimator is approximated by employing

asymptotic normality and the usual asymptotic variance for the maximum

likelihood estimator. Madansky refers to this as the linearization method.

For this case, the approximate lower confidence limit has the form
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X . (q (x))I 1 2 z , (9)
11 N T 9

where

q(x) 1^ - ^P'i) (10)

For both of these techniques, the convergence to the asymptotic

distribution is not uniform and substantially larger sample sizes are required

near the boundary of the parameter space in order for the limiting distri-

bution to provide a satisfactory approximation.

Some technical improvements using the likelihood ratio technique are

given in C. Mack [12], but their relationship with the likelihood ratio

procedure is not identified in that paper.

The Lindstrom-Madden method, as described in Lloyd and Lipow [11] is

of fundamental importance to this discussion. Let h(ý) denote the maximum

likelihood estimator as in (5) and let N = min Ni . Then regard N(l-h(p)) = V
ligk

as the number of failures in N Bernoulli trial and use the usual method

of obtaining a lower confidence limit for a single binomial proportion. In

general, V will not be an irteger, so that the interpretation as a binomial

random variable is not completely justified. One proceeds by interpolation in

either the tables of the binomial distribution or in the tables of the incomplete

beta function. Some forms of non-linear interpolation have also been

proposed and investigated.

Although this procedure is widely used by engineers, it is our impression

that statisticians tended to view it with some skepticism. However, extensive

simulations and numerical computations made prior to the issuance of the

Handbook for the Calculation of Lower Statistical Confidence Bounds on

ySystem Reliability [3] suggested that it performs as well as any of the competing
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methods under investigation in the region of high reliability. In addition

the simulations strongtly suggested that it met the requirement of being

conservative, that is, that the true confidence level is always at least

- as high as the nominal confidence level. A proof of this fact using as

inequality due to Sudakov [21] is given in Harris and Soms [8]. The

Lindstrom-Madden technique has been recommended for series systems in the above

mentioned handbook.

Closely related to the Lindstron-Madden method is the method of "key

test results" introduced by K. A. Weaver [22] and extended by A. Winterbottom [23].

The maximum likelihood estimate h(•) is calculated. Let N7min N..
1 1

Calculate [Nh(^)]. This of course is always an integer. Then find the usual

binomial confidence limit for N and [Nh(p)] = x. If Nh(A) is an integer,

then the Lindstrom-Madden method and the key test method coincide. Since we

have shown [ 8 ] that the Lindstrom-Madden method is conservative. It follows

that the method of key test results is at least as conservative.

Easterling's [4] modified maximum likelihood method also employs the maximum

likelihood estimator. From the usual asymptotic theory for maximum likelihood

estimation, the estimator h(p) has an asymptotic variance given by

cy = ýI •@(~ Var(P^i)P(I

Replace pi by Pi in the above, thereby obtaining (10), and set

(12)
h(p) nI n

Then regard i as the binomial sample size with n h(p) successes observed

and obtain the lower confidence interval for a single binomial parameter, inter-

polatinjc as ýn the Lindstrom-11adden i,method.
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A further modification is suggested in which n and x are replaced

by the next integer. This is designated as the MMLI method. The suggestion

that this may be satisfactory is deduced from an examination of the

deficiencies noted in the linearization (maximum likelihood) method by

Madansky.

In a related investigation, J. L. Epstein [5] considered the problem

of confidence sets for the product of two binomial parameters. This can be

interpreted as either a parallel or a series system in the reliability

context. Epstein was motivated by some biomedical applications in which

the assumption of high reliability for each of the components is not as natural

as it is for the engineering reliability context.

In studying this question, Epstein considered the two ordering functions

SXX 2  (X1+l)(X2 +l)

glý) = NIN2 ' g2 (R) NIN 2

He concluded that the second was preferable to the first, since the partition

of the sample space induced by the second is finer than that induced by the

first. This effect is particularly pronounced when either X or X is

zero. This is not,however, a significant factor for series systems with high

reliability. It is, nevertheless, quite important for parallel systems with

high reliability, as we shall subsequently observe.
SApparently ideas smlrto those deduced by Epstein motivated the

development of the technique suggested by Sandia Corporation and referred to

as CONLIM [6].

let h(p) be the reliability function of any coherent system. Then let

g(R) = h(p) , (13)



10

where p = ( pl and

=P1  (Xi+1)/(Ni+2), 1 < i < k (14)

For the series system, this reduces to

k
! g(X) = 11 (Xi+l)/(Ni+2). (15)

St=1
The particular choice of pi leads one to suspect that this was motivated

!1

by Bayesian considerations employing independent uniform priors on 0 : pi r 1.

The computer program which uses (13) to calculate lower confidence bounds

for system reliability is capable of dealing with a large variety of systems,

but unfortunately, a substantial amount of computer time is often required

in order to calculate the lower confidence limit.

The Poisson approximation methods, alluded to earlier, have principally

been exploited by statisticians from the Soviet Union.

In particular, Pa lov [19] used the ordering function (6), by defining

the parameter for which the confidence limit is sought as

P = 1l + ' 2  + n (16)

N1 N 2  N K

Then, choose M so that MNI,-..,MNk are all approximately integers.

This results in

Mp = MlXI + M2 X2 + ... + MkXk (17)

and Z MiYi is a suitable statistic for estimation of the parametric function

(17) and therefore can be easily employed to get confidence bounds on p

As a specific illustration, consider k = 3, N1 = 600, N2  300,

N3 -100. Then, from (6)
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h(O) 1- q1  2 q3
• 1 N2  N3

and

600(l - h(p)) 600 Al + X 2 + X 3
(60 300 1-O -0

so that Y + 2Y2 + 6Y3  is an appropriate statistic to use for estimation of

h(ý) and for other inferential purposes.

Another method for employing Poisson approximations has been given

by Mirniy and Soloviev [18]. This technique may be described as follows.

Letk

k E log Pih(P) 1= Ipi e ei1l

i=l

For pi near one, as is appropriate for high reliability,

log Pi ~"(I - pi).

Let X. = Ni.(l-p.) i = 1.2,-.,k. Then construct an upper confidence
n

limit for X and an approximate upper confidence limit for
i =1

k k
e_ (1-pi) - i i/Ni

e e (19)

is given by max(-E X i/Ni), where the maximum is over the set
k

{ X A. < A}, A the upper confidence limit referred to above. This
i l 1

procedure is completely analogous to the procedure using (2) and (37), except

that an upper confidence bound is being constructed for the unreliability.

'rhis brief survey makes no pretense of being complete. In particular,

the reader is referred to the paper by Joan Rosenblatt [20], which contains

a survey of many of the early techniques employed for this problem. Likewise,

the book by N. Mann, R. E. Schafer, and N. D. Singpurwalla [14] should be



noted. in particular Chapter 10 iF relevant to this discussion and a

commonly employed method, called the AO method is described therein. Also

Bayesian methods- such as these proposed by 0. Mastran [16] and D. Mastran

and N. D. Singpurwalla r17], have been omitted, since these are obtained

using a different set of principles than the methods which are compared

in this paper.

Given this large number of available techniques, how does onG make a

selection? To answer this question, in the course of the preparation of

the Handbook for the Calculation of Lower Statistical Confidence Bounds on

System Reliability [3], an extensive investigation of various procedures wasI carried out. This investigation employed both simulation methods and

numerical calculations. Among the requirements sought for were conservatism

of procedures. However, while procedures that were found to be optimistic

(non-conservative) were regarded as not satisfactory, attention was paid as well

to accuracy, namely, that the true confidence coefficient should be as close

to (1-a), the nominal confidence coefficient, as possible. Ease of computation

was also considered. Finally, performance of the statistical procedures for high

reliability was regarded as being of much more significance than performance at

low res jabilities.

This investigation established among other things, that the AO method and

Easterling's two proposals are non-conservative. CONLIM satisfied every require-

ment with the exception of ease of computation.

A surprising conclusion of this investigation was that the Lindstrom-

Madden method was found to be conservative, but not excessively conservative.

In short, it was the epirnion of the cormittee entrusted with the preparation

of this handbook, that the Lindstrom-!,adden method should be adopted for use

and be the t reco,.miidd in the har'%ok
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Since the investigation undertaken in preparation of the handbook employed

simulation and the computation of a large number of numerical examples,

a theoretical explanation for the impressive performance of the Lindstrom-

Madden method is needed.

The answer to this is provided in Harris ani Soms [8] and depends

on the application of an inequ3lity of Sudakov [21]. The description of

these results follow.

Let
p

1 J r-ISIp(r,s') : gr•,GYT (1-t)S' dt

Then, it i3 well knGwn that

S:(n )P = I p(n-yy+l).

1p

Let u(n,yrt) satisfy
H

a= I u(n,y,a)(n-yy+l) (21)

and assume that N1  N2 <_ ... <_ Nk. Let

g(X) = I fX.'N )
i=1 "i N

and let

k 0 -

-YI -q N 1 ' (22)
i~l I

where x is the observed value of X. Then Sudakov showed that
-0,N1,Yl,,,) b (23)
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where b is the 1-a Buehler optimal lower confidence limit for g(X).

Now U(Nl,yl,a) is the Lindstrom-Madden solution. Thus, it follows that if

y is an integer, the Lindstrom-Madden solution is optimal.

In Harris and Soms, a generalization of the Sudakov inequality was

employed to show that (23) holds when Yl is computed for any of a large

class of ordering functions in addition to the maximum likelihood estimator.

This class includes

k S, ~ ~~g(X) =l-•Y

i=l

Sg(X)=(xi + i) i a 0,

I arnd ni+l 2! Ž ai+1 ni, and the choice (7) employed by Johns. In addition,

an improvement on the upper bound in (23) was obtained. In short, if

Yi max {y:g(,) • g(No), Yi Ni-xi, Yoi Ni Xoi} (24)

and = (0,...,0, yi, ,yk), y= then

u(N, y13 CO) 5 b : min u(Ni[y*],(), (25)

holds for a class of ordering functions, which includes many commonly in

use. Forthe relevant details, see Harris and Soms. The lefthand side of

(25) may be regarded as a generalization of the Linstrom-Madden method.
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4. LOWER CONFIDENCE UNITS FOR THE RELIABILITY OF PARALLEL SYSTEMPS

To some extent, there is a duality between series and parallel systems.

For a parallel system,

k k
1-h(o) = TI = = (l-p) . (26)ial i t•

Thus, interchanging reliability and unreliability, success and failure,

Pi and 1-pi=qi converts any probability statement about a series system

into &n "equivalent" statement about a parallel system. Unfortunately, this

duality will not extend as readily to the statistical inference aspects.

The reasons are that the above duality will result in conservative confidence

bounds being changed into non-conservative bounds. Also high reliability

becomes high unreliability, an area of little interest to practitioners.

Fruther, the Poisson approximation techniques employed in the study of one

type of system will not carry over to the other, since small failure probabilities

become small success probabilities, again a situation of virtually no interest.

Nevertheless, some parts of the previous discussion for series systems does

carry over to parallel systems.

For this reason, it is convenient to replace the problem of finding

a lower confidence limit for the reliability by the problem of finding an

upper confidernce level for the unreliability. Then, to make the analogy

with series systems clearer, we will denote the unreliability by B(o) and

the ordering function based on failures by W), where R denote failures,

that is

1 -h5nd NI-Xi ribi

and j(1) will often be an estimator of the unreliability.
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Buehler's [2] method of computing separate l-(l-a)l/k confidence

bounds carries over, however, the Poisson approximations that he uses to get

specific numerical values are valid only for parallel systems.

Madansky's [13] method using the Wilk's likelihood ratio statistic

is equally valid for parallel systems, since in employing a continous

approximation, namely the chi-square distribution, the transference from

conservatism to optimism does not take place. Thus, all comments about the

use of the technique for series systems apply essentially unchanged for

parallel systems. Similarly, the comments about use of the asymptotic theory

for the maximum likelihood estimator remain unchanged.

The observations of Epstein [5] that the ordering functions

+I)(R2+I)/NIN is preferable to IR 2/NIN 2  is far more relevant to

parallel systems than to series systems. To see this, note that the maximum
k k k

likelihood estimator of II qi is IT 1 / I Ni., where X is the number
i=l th i=l i=l

of observed failures of the i component. In the case of high reliability, i

will tend to be small and one would like to believe that it will frequently be
k

zero. The difficulty with an ordering function such as RI (9 1I/N) is that
i=1

for k 2, tile sample outcomes l = 0, X2 = 0 is not distinguished from

R I a0, 2 a 100, when N1 I N2 = 100. More precisely, theypartition induced

by W(5) is then very coarse when at least one 7i is zero. Consec.ently, the

use of a finer partition for the high reliability situation may produce less

conservatism and greater accuracy. Presumably, s-ni'lar considerations

motivated the choice of Pi for the CONLIM metho,,, which in this case gives

k
.i (xi+l)'(N1 +2) . (27)
i-1

A so,,,.whjl dlffifrrr• t,'chnlque fcr Obtainfng an tipper confidence llrit on

h(pO is given in .:'i[7,1. wh,'.re the e'xr'.'fltial family theory is ui., to



17

obtain the uniformly most accurate unbiased upper confidence limit. However,

this technique does not have a simple description in terms of an ordering

function.

The specific question of Buehler optimality for parallel systems was con-

sidered in Harris and Soms [9]. There the following results were obtained.

Let

k
RI (X +d), I < d < 1.5. (28)

Then replacing the binomial distribution by the Poisson approximation, for

2 any failure vector with xi = 5 for some 1 5 i 5 k and x = 0

otherwise, and letting

A= {R0: g(x 0 ) 5 g(l)} (29)

where

(g(R) 5 g(io)}

is a Schur-concave function of - Ln Ai. i - 1,2,...,k, where X is the parameter

vector for the Poisscn approximation obtained by letting X i = N151, i =

1,2,...,k). The reader is referred to A. W. Marshall and I. Olkin [15] for

details on the properties of Schur-concave functions. This enables one to

conclude that for o 0 Az the Buehler optimal upper confidence limit for
k
TI Ai is given by the solution of
i=1

Pf*g(i) 5 g(i0))= 2 , (30)

whore \' (a,....,a). namely has all components identical. This Schur-

cnncavitfy .rqtr-n; ,::ay t- extended to other ordering functions than (2W". n
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particular, the choice used by Buehler [2] also satisfies the necessary

conditions.

Unfortunately, if the observed vector of failures lies outside

of AP, this conclusion does not hold for the ordering function (231.

Here, upper and lower bounds for the Buehler optimal upder confidence

limit have been constructed. The reader is referred to the original

paper for details. [9].

tI

[
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